Central Valley Selenium Control Program

North Bay Selenium

Advisory Committee Meeting

1 April 2008

Jeanne Chilcott and Rudy Schnagl RWQCB – Central Valley

Overview

- Background and History
- Project Performance to Date
- Future Activities

Central Valley Region

Region 5 Basins

- > 40% land surface
- >50% managed water supply
- 77% irrigated agriculture
- > 3-Distinct Basins

Issue: Are other areas in the Central Valley contaminated with Selenium?

Selenium Source Identification

Set up surveys throughout Central Valley (1984)

 All tributaries w/special focus on areas draining ground water

Found two hotspots:

- 1. Tulare Lake Basin
- 2. Grassland Watershed

Tulare Lake Basin

- -- Closed Basin
- --Subsurface, tile drainage collected in evaporation basins
- --Waterfowl deformities found
- --Placed under WDRs (initial 1986; final 1993)

Selenium Control Program Phase I

1986 Basin Plan Amendment

- --Drainage reduction thru irrigation management
- -- Drainage Management Plans required
- --Selenium WQO set at 5-ug/L (USEPA)

Selenium Control Program Phase I

Results

- --Selenium loads decreased
- --San Joaquin River water quality improved
- --Wetland channel water quality degraded
 - -- Decreased dilution flows

Selenium Control Program *Phase II*

Regroup

- --Irrigation management not complete solution
- --Required TMDLs/continued exceedance of 5-ug/L objective
- --Proposed USFWS wetland water quality objective of 2-ug/L

Drainers under pressure to solve problem or lose ability to discharge

Grassland
Bypass Project
Concept

The Grassland Bypass Project (GBP) in Brief

- Consolidates drainage into a single channel and routes discharges away from areas utilized by wildlife
- Controls the selenium loads ultimately discharged to the San Joaquin River and Delta
- Reduces drainage discharges
 (Ultimate goal is zero discharge)

Delta

Lower San Joaquin River Grassland Bypass Concept

Impaired 6-miles natural channels

Improved
31 miles natural channels
75 miles wetland channels
61,810 acres wetlands

Unimpaired

Drainers Enter into Use Agreement with USBR

- Short-term project maximum 5 years
- ➤ In order to continue full five years, the Use Agreement (UA) required that the Regional Board
 - Adopt and implement a Basin Plan Amendment to control subsurface discharges of selenium
 - Issue a Waste Discharge Requirement (WDR) for the GBP

1996 Basin Plan Amendment

- 1) Prioritized Selenium Control
 - Wetland Supply Channels
 - San Joaquin River
 - Final 6-miles of Mud Slough (north)
- Revised beneficial uses and selenium water quality objectives
 - 2-ug/L in wetland supply channels
 - 5-ug/L in sloughs and rivers

1996 BPA continued:

- 3) Established an annual cap of selenium discharges at 8,000 lbs.
- 4) Regulate selenium discharges through actions that focus on selenium load reductions
- Use WDRs and prohibitions of discharge to control drainage discharges

Compliance Schedule for Meeting Selenium Objectives (bold) & Performance Goals (italics)

Waterbody/ Water Year Type	10 Jan 1997	1 Oct 2002	1 Oct 2005	1 Oct 2010
Wetland Channel Salt Slough	2 ug/L monthly ave			
SJR below Merced Rv - Wet		<i>5 ug/L monthly ave</i>	5 ug/L 4-day ave	
SJR below Merced Rv - Dry		8 ug/L monthly ave	<i>5 ug/L monthly ave</i>	5 ug/L 4-day ave
SJR above Merced Rv & Mud Slough				5 ug/L 4-day ave

Grassland Bypass Project WDR

- Adopted 24 July 1998 (revised 2001)
- Only WDRs in the State regulating discharge from agricultural lands
- Extensive Monitoring and Reporting Program (M&RP)
- Monthly load limits
- Annual load reductions (~5%)
- Load cap of 8,000-lbs/yr

Grassland Bypass Project Oversight

Oversight Committee

Technical
Policy and
Review Team

Data Collection and Reporting Team

Grassland Bypass Project

Monitoring and Reporting Program

- Who monitors?
 - Dischargers: BOR and SLDMWA
 - ◆ CV Regional Board
 - ◆ Others: USFWS, USGS, CDFG
- Reporting how often?
 - Monthly
 - Quarterly
 - Annually

DATA AVAILABLE AT

www.sfei.org

GBP Water Quality Monitoring Locations

Overview

- Background and History
- Project Performance to Date
- Future Activities

Recap:

Use Agreement – contains a number of commitments that must be met in order for use of the San Luis Drain to continue

- Data Collection and Reporting Team (DCRT) – gathers data to evaluate whether or not Use Agreement commitments are met
- Waste Discharge Requirements –
 Monitoring and Reporting Program

PRELIMINARY RESULT Figure 2b. Monthly selenium discharges from the terminus of the San Luis Drain into Mud Slough compared to load values.

■ Land Value ■ Disabases

GBP Annual Selenium Discharge

Lower San Joaquin River Basin

Summary Findings Since Oct. '96

- WQO typically met in wetland supply channels
- WQOs met in Salt Slough and SJR
- Maximum load cap not exceeded

Drainage Management

Control Efforts by the Grassland Area Farmers

- > Farm-Level Components
 - -- Tailwater Return Systems
- > District-Level Components
 - -- Drain Water Recycling
- > Regional Components
 - --Drainage Reuse

Some Area Projects

- Recirculation (blending)
- Low-interest loan program for irrigation improvements
- Treatment studies
- Land retirement
- Deep groundwater pumping
- San Joaquin Water Quality Improvement Project (SJRIP)

Regional Components – Drainage Reuse

- Approximately 4,000 acres in DPA (SJRIP)
- Use recycled drainage water on salt tolerant crops
 - Reduce discharge of drainage already produced
 - Provides some yield and evaporation potential as opposed to fallow ground

Conditions when problems occur

- Severe storm events (1996, 1997, 2005)
 - Stormwater plan to minimize impacts of extreme storm events
- (Possibly) excessive pre-irrigation
 - Some districts have adopted pricing structures that provide a strong disincentive for over-irrigating

Source: U.S. Bureau of Reclamation

Outstanding Issues

- Prohibition of Discharge to Mud Slu goes into effect 2010
- Drainers cannot meet Water Quality Objective
- Continuing to ratchet loads down:
 - > ~1,000-lbs in critical year
 - > ~4,500-lbs in wet year

Getting to Zero

- Drainers seeking time extension on use of the San Luis Drain
 - Scoping, stakeholder input
 - ◆ EIS/EIR underway
- Would need Basin Plan Amendment
 - ◆ Change compliance schedule for Mud Slu

Getting to Zero

- More source control projects
- Expand reuse area
- Design and install treatment and storage system

Additional Challenges

- Storm and flood management
- Salt build-up with lack of flushing
 - Recycling of SJR at pumps

Modeled fingerprint Dec-Mar

Modeled fingerprint Mar - Jun

Modeled fingerprint Jun-Sep

Modeled fingerprint Sep-Dec

Questions?

Contact:

Gail Cismowski

gcismowski@waterboards.ca.gov

Or

Victoria Westman wwestman waterboards.ca.gov

Or

Rudy Schnagl rschnagl@waterboards.ca.gov

Grassland Drainage Area
San Joaquin River Water Quality
Improvement Project
Location Map

SUMMERS ENGINEERING, INC.
Consulting Engineers
HANFORD CALIFORNIA
SEPTEMBER 2003

Grassland Bypass Project Selenium Load Limits

